
Shortest Paths

Single-Source Shortest
Paths

• Input: Weighted graph (G, w). Source vertex s.  
Output: Shortest path tree encoding shortest path from s
to every other node.  
 
 
 
 
 
 
 

1

2

1

2

2

314

25
0

1

2
3

4

5

Single-Source Shortest
Paths

• Input: Weighted graph (G, w). Source vertex s.  
Output: Shortest path tree encoding shortest path from s
to every other node.  
 
 
 
 
 
 
 

1

2

1

2

2

314

25
0

1

2
3

4

5

tree: [-1,0,0,2,3,3] 
idx 0 1 2 3 4 5

Quick and dirty recover path  
from root to t

def getPath(tree, t)
 list = []
 while (t != -1)
 list.add(t)
 t = tree[t]
 end
 list.reverse()
 return list
end

Dĳkstra’s Algorithm

• Solution to the Single-Source shortest path.

• A greedy algorithm (but non-trivial greedy algorithm)

• Uses a Priority Queue

• Running time is O((V+E) log V)

• If your graph is un-weighted, just use breadth-first search.

Dĳkstra’s Algorithm

• Main Idea:

• Grow the shortest path tree from the start vertex.

• Maintain the “best edge” connecting every vertex not in
the tree to the growing shortest path tree along with its
distance across that edge back to the root.

• Each iteration, add whatever vertex is closest to the
current tree to the current tree.

Dĳkstra’s Algorithm

1

2

1

2

2

314

25
0

1

2
3

4

5

D[1] = 1

D[2] = 1

D[4] = ∞

D[3] = ∞

D[5] = ∞

D[0] = 0

 D: [0 1 2 ∞ ∞ ∞]
Tree: [-1 0 0 -1 -1 -1]

Dĳkstra’s Algorithm

1

2

1

2

3

314

25
0

1

2
3

4

5

D[1] = 1

D[2] = 1

D[4] = 15

D[3] = ∞

D[5] = ∞

D[0] = 0

 D: [0 1 2 ∞ 15 ∞]
Tree: [-1 0 0 -1 1 -1]

Dĳkstra’s Algorithm

1

2

1

2

2

314

25
0

1

2
3

4

5

D[1] = 1

D[2] = 1

D[4] = 15

D[3] = 4

D[5] = ∞

D[0] = 0

 D: [0 1 2 4 15 ∞]
Tree: [-1 0 0 2 1 -1]

Dĳkstra’s Algorithm

1

2

1

2

2

314

25
0

1

2
3

4

5

D[1] = 1

D[2] = 1

D[4] = 5

D[3] = 4

D[5] = 6

D[0] = 0

 D: [0 1 2 4 5 6]
Tree: [-1 0 0 2 3 3]

Dĳkstra’s Algorithm

1

2

1

2

2

314

25
0

1

2
3

4

5

D[1] = 1

D[2] = 1

D[4] = 5

D[3] = 4

D[5] = 6

D[0] = 0

 D: [0 1 2 4 5 6]
Tree: [-1 0 0 2 3 3]

Dĳkstra’s Algorithm

1

2

1

2

2

314

25
0

1

2
3

4

5

D[1] = 1

D[2] = 1

D[4] = 5

D[3] = 4

D[5] = 6

D[0] = 0

 D: [0 1 2 4 5 6]
Tree: [-1 0 0 2 3 3]

Dĳkstra’s Algorithm

1

2

1

2

2

314

25
0

1

2
3

4

5

D[1] = 1

D[2] = 1

D[4] = 5

D[3] = 4

D[5] = 6

D[0] = 0

 D: [0 1 2 4 5 6]
Tree: [-1 0 0 2 3 3]

Implementation Details

• For every vertex v not in the tree, we maintain a MIN-
QUEUE on the vertices, with value given by D[v].

• Every iteration of the loop, we take the current minimum
vertex v and add it to the tree.

• This requires looping over its neighbors and updating
their best estimate to the tree if adding the new vertex
gives a better estimate. This also requires an updated
for each such edge in the priority queue.

