Shortest Paths

Single-Source Shortest
Paths

* Input: Weighted graph (G, w). Source vertex s.
Output: Shortest path tree encoding shortest path from s
to every other node.

Single-Source Shortest
Paths

* Input: Weighted graph (G, w). Source vertex s.
Output: Shortest path tree encoding shortest path from s
to every other node.

Quick and dirty recover path
from root to t

def getPath(tree, t)
list = []
while (t '= -1)
list.add(t)
t = tree[t]
end
list.reverse()
return list
end

Dijkstra’s Algorithm

e Solution to the Single-Source shortest path.
e A greedy algorithm (but non-trivial greedy algorithm)
e Uses a Priority Queue
e Running time is O((V+E) log V)

e |f your graph is un-weighted, just use breadth-first search.

Dijkstra’s Algorithm

e Main ldea:
e Grow the shortest path tree from the start vertex.

e Maintain the “best edge” connecting every vertex not in
the tree to the growing shortest path tree along with its
distance across that edge back to the root.

e Each iteration, add whatever vertex is closest to the
current tree to the current tree.

Dijkstra’s Algorithm

Dijkstra’s Algorithm

D[4] = 15

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Dijkstra’s Algorithm

DI5] =6

Dijkstra’s Algorithm

Dijkstra’s Algorithm

Implementation Detalls

e For every vertex v not in the tree, we maintain a MIN-
QUEUE on the vertices, with value given by DI[v].

e Every iteration of the loop, we take the current minimum
vertex v and add it to the tree.

e This requires looping over its neighbors and updating
their best estimate to the tree if adding the new vertex
gives a better estimate. This also requires an updated

for each such edge in the priority queue.

